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Introduction

Non-Gaussian Noise Effects on
Reliability of Multistable
Systems
For certain ~pes of compliant structures, the designer must consider limit states
associated with the onset of jhidelastic instability. These limit states may include
bijimcations from motion in a safe region of phase space to chaotic motion with exits
(jumps) out of the safe region. In practice, such bljimcations occur in systems with
noisy or stochastic excitations. For a wide class of dynamical systems, a jimdamental
connection between deterministic and stochastic chaos allows the application to
stochastic systems of a necessary condition for the occurrence of chaos originally
obtained by Melnikov for the deterministic case. We discuss the application of this
corrdition to obtain probabilities that chaotic motions with .iumps cannot occur in
mrdtistable systems excited by processes with tail-limited marginal distributions.

The goal of structural reliability is to estimate probabilities
of exceedance of limit states characterizing a structure’s perfor-
mance. For certain fluidelastic systems, an important limit state
is that associated with the onset of fluidelastic instability. This
is defined as the occurrence of a bifurcation that causes an
unfavorable change in the system’s oscillatory form. An exam-
ple of fluidelastic instability is the Hopf bifurcation occurring
in structures, such as the first Tacoma Narrows bridge. Below
a critical wind velocity, the dynamical system approximately
representing such a bridge has a stable fixed point: a small
disturbance of the system from its position of equilibrium will
die out in time as the system is attracted by the stable fixed
point. Beyond the bifurcation point (i.e., for velocities greater
than the critical velocity), the stable fixed point becomes unsta-
ble, and the system experiences flutter motion; that is, it is
attracted by a stable limit cycle surrounding the unstable fixed
point.

Recent discoveries in the theory of deterministic dynamical
systems include the existence of bifurcations from a periodic
or quasi-periodic attractor to a chaotic attractor. For multistable
systems such bifurcations can entail exits from a safe region
(jumps ), and can therefore be of concern from a structural
reliability viewpoint. Similar jumps can occur in stochastic
multistable systems. These phenomena are of potential interest
in hydroel astic applications. A simple multi stable hydroelastic
system exhibiting chaotic behavior with jumps was studied ex-
perimentally and numerically by Simiu and Cook ( 1992). Other
multistable hydroelastic systems with the potential for chaotic
jumps are moored tankers and towed ships (Papoulias and Ber-
nitsas, 1986; Bemitsas and Kekridis, 1988; Schellin et al., 1990;
Jiang and Schellin, 1990). Chaotic motions were also found to
occur in a numerical model of a compliant offshore tower stud-
ied by Thompson et al. ( 1984).

To illustrate the behavior of a multistable system, we consider
a simple bistable dynamical system consisting of a double po-
tential well (Fig. 1(a)). In the absence of friction and forcing,
the system has two stable fixed points (centers ), C and C‘, and
one saddle point, O (Fig. 1(b )). A ball released from rest from
point A would oscillate periodically on the closed curve centered
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Fig. 1 (a) Potential wells for bistable system; (b) phase Planediagrams

around C in the phase plane diagram of Fig. 1(b). (If the ball
were released from point A‘, itwould move periodically along
a curve centered around C‘.) If released from point B, the
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Fig. 2 Time histories of bistable system: (a) without noiee; (b), (c), (d)
with noise

system would oscillate around O, as shown also in Fig. 1(b).
Motions that start inside (outside) the eight-shaped curve—the
separatrix-shown in Fig. 1(b) stay inside (outside) it for all
time. Motions starring on the separatrix will reach the saddle
point O at time r + = and r -+ –=. The separatrix thus consists
of a stable manifold that coincides with an unstable manifold,
and is referred to as a homoclinic orbit.

If the system of Fig. 1 is perturbed by the addition of suffi-
ciently small friction and periodic forcing, it can be shown that,
in a Poincar6 section, the saddle point will persist—although
slightly displaced. However, the homoclinic orbit will break;
that is, the stable and unstable manifolds will no longer coincide.
A distance can be defined between the perturbed system’s stable
and unstable manifolds. This distance is equal to the length of
the segment defined by the intersections with the separated
manifolds of a straight line L.normal to the homoclinic orbit of
the unperturbed system. To first order, that distance is propor-
tional to the system’s Melnikov function (see, e.g., Arrowsmith
and Place, 1990, p. 172).

If the Melnikov function has simple zeros, the stable and
unstable manifolds of the perturbed system intersect trans-
versely. Poincar6 sections through the stable and unstable mani-
folds then exhibit lobes, among which the so-called turnstile
lobes have a privileged role (Wiggins, 1990). Under iteration
by the Poincar6 map, the turnstile lobes transport phase space
from the interior to the exterior of the region bound by the
pseudoseparatrix, and vice versa. (The pseudoseparatrix is made
up of segments defining lobes and is the counterpart in the
perturbed system of the separatrix of Fig. 1(b).) It can further
be shown that this transport is chaotic; that is, owing to the
folding of lobes under iteration, the resulting map is topologi-
cally similar to the Smale horseshoe map. A necessary condition
for the occurrence of deterministic chaos (and the attendant
jumps) is that the Melnikov function have simple zeros. The
Melnikov function—and the corresponding necessary condition
for the occurrence of chaos—have been generalized to the case
of quasi-periodic excitations by Beigie et al. ( 1992).

We now illustrate in Fig. 2 the possible effects of stochastic
excitation (or noise) on the bistab]e system. Figure 2(a) shows
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a periodic motion induced in the harmonically forced, dissipa-
tive system. Figure 2(b) shows the same system in which a
small amount of noise has been injected. The oscillation of Fig.
2(b) does not differ significantly from that of Fig. 2(a), except
for the presence of small “wiggles” induced by the noise.
However, upon increasing the noise intensity, a bifurcation oc-
curs. Past that bifurcation, the motion, which was previously
confined to a‘ ‘safe” region, now crosses, chaotically, the poten-
tial barrier between the two regions associated with the poten-
tial wells. As the noise is increased further, the chaotic mo-
tion exhibits more frequent jumps (smaller mean exit times )
(Fig. 2(d)).

Choatic time histories visually indistinguishable from Figs.
2(c) or (d) would be obtained if, instead of introducing noise
in the system, we would keep the system deterministic, but
would increase the amplitude of the harmonic forcing by an
appropriate amount. However, noise-induced (stochastic ) chaos
and deterministic chaos do not just look alike. Frey and Simiu
(1993a) showed that the two types of chaos are in fact closely
related mathematically. This fact allows the Melnikov crite-
rion-originally developed for deterministic chaos—to be used
in its generalized form to develop necessary conditions for the
occurrence of stochastic chaos with jumps. In the case of
Gaussian excitation, the Melnikov criterion yields the trivial
result that, with probability one, jumps will occur no matter
how small the noise, although for very small noise the time
between jumps may be expected to be very large (Frey and
Simiu, 1993a).

The purpose of this paper is to estimate the reliability of a
system with respect to exiting from a safe region in the techno-
logically interesting case of random excitation with tail-limited
marginal distributions. Until recently, for computational conve-
nience and owing to insufficient knowledge, reliability compu-
tations were based in most cases on the assumption that proba-
bility distributions describing the forcing have infinite tails. In
fact, stochastic forces of interest in structural and offshore engi-
neering have limited upper tails. This is due to limits on the
magnitude of the extremes that are inherent in the relevant
physical processes. Such limits were estimated recently for ex-
treme wind speeds in certain climates by using statistical analy-
ses based on novel “peaks over threshold” methods (Lechner
et al., 1992). -

Following a description of our approach, we illustrate its
application by considering a simple dynamical system, the
Duffing-Holmes oscillator. We then present our conclusions,
including comments on the limitations of our approach and on
needed future research.

Reliability Estimation

This section contains: 1) a brief description of the generalized
Melnikov approach, 2) representations of stochastic processes
with tail-limited marginal distribution that are consistent with
the use of the Melnikov approach, 3) a derivation of the condi-
tion for nonoccunence of chaos in which one of these represen-
tations is used, and 4) an example of the use of this condition
to estimate the reliability of the system with respect to the
occurrence of chaotic motion with jumps.

Melnikov Process. We consider a second-order system

Y, = X2 (la)

.i2 =f(x, ) + c[kXZ + y COS(u? +’@) + aX(f)] (lb)

whose unperturbed flow has a homoclinic orbit {x,(t), i,(r)).
The stochastic excitation X(t) is approximated by the random

process
m

X~(t) = ~ ‘yi COS (k”jt + ~fo) (2)
,=1

where -yi and ~io (or U, and @j.) are random variables. We
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assume X(t) is uniforrrdy bounded and continuous. (This condi-
tion is satisfied if the marginal distribution of the process has
limited tails.)

The expression for the Mehtikov process is

M(u, ~; W,, @I., . . . . Um, dk)

= ‘lit + ~Z(W, ~) + U 5 YiZ(~i, @i.) (3)
i=l

where

J

.
I= x:(t)dt (4a)

. .

f

.
Z(u, o) = x,(t) COS (of + @)dr (4b)

.=

J

.
Z(UJ,, ~io) = X$(?) COS (Wit + @jo)dr (4C)

-.

Chaotic motion cannot occur if

Y m@w[z(u, +)] + c ~ mm [z(~i, 4+.)1 – Zk<0 (5)
i-l ‘0,

where max denotes maximum value over all possible values
of ~. +

Stochastic Process Representations. Let X(t) denote a
non-Gaussian stochastic process with marginal distribution F.
To apply the generalized Melnikov approach, our first task is
to seek approximations of X (t)in the form of Eq. (2).

Consider a stationary Gaussian process Y(t) with zero mean
unit variance, covariance function pY(t) = ~[1’(t)l’(f + ~)1,
and one-sided power-spectral density function gy( Q ), Q >0.
Let @denote the distribution of the standard Gaussian variable.
The process

x(l) = F-’[@(Y(f)] (6)

has the marginal distribution F. By Eq. (6), to any specified
spectral density gx( r) of X(t), there corresponds a covariance
function p~( t) and a spectral density g~( Q). We assume gy(fl )
can be obtained and is used to simulate Y(t).

One possible approximation of X (t) in a form similar to Eq.
(2) is obtained from its Fourier integral representation. Fwst,
an approximation of the Gaussian process Y(t) is obtained by
numerical simulation. Several simulation methods are available,
including the Nyquist representation (Rice, 1954) and the Shi-
nozuka representation (Shinozuka, 1971). It was shown ( Soong
and Gngoriu, 1992) that the following representation is particu-
larly efficient:

N

y,v(f) = ~ R,u~ COS (~kf + @k) (7)
k=l

where ok = (k – 112)AQ k = 1, 2, . . . N are equally spaced
discrete frequencies in the frequency band (O, NAf2 ) in which
most of the power of Y(t) is contained.

J

Clk~Af112

u; = g(!2)dfl (8)
flk-Afl/2

denotes the variance associated with the harmonic k; (@~) are
independent identically distributes (i.i.d.) variables uniformly
distributed in (O, 2n ); and {R~} are i.i.d. Rayleigh variables
with the density~(r) = r exp(–r2/2) for r >0, andf(r) = O
for r < 0. The approximation YN(t) approaches Y(r) as
N-+ co.

Next, from YN(t) we obtain corresponding values X~(t) using
the transformation of Eq. (6). Finally, we represent X~(r) as
an approximate Fourier integral
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Xm,N(t) = (1/27i’) ~ C(ftj) COS [flit - d(C?i)]Af2i (9)
i-l

C(fli) e [A2(fli) + B2($2i)]”2 (lo)

O(f)i) = tart-’ [BAA] (11)
M

A (~i ) = ~ XN(t~) COS ~it@tk (12)
k-l

M

~(~i ) = ~ xN(fk) Skl ~it~Atk (13)
k-l

Since Eq. (9) has the same form as Eq. (2), it can be used to
obtain the sum of the left-hand side of Eq. (5) for a sufficiently
large number of realizations of Y~(t). Once this is done, the
probability that Eq. (5) holds can be estimated for any given
intensity m. This brute force procedure is seen to require a fairly
large, though not prohibitive, amount of computation.

We now examine the following alternative where the nonlin-
ear transformation in Eq. (6) is approximated by a polynomial
of degree n. This can be done to any accuracy in a bounded
interval. Let

xn,~(f) = pn(YN(r)) (14)

be a polynomial approximation of X (t)in Eq. (6) based on the
representation Y~(t)of Y(t), in which

n

h(y) = ~ ‘Jyj (15)
j=o

The non-Gaussian noise X.,~(t) follows the marginal distribu-
tion F approximately and can be expressed as a linear combina-
tion of harmonics with random amplitudes. This statement is
based on Eqs. (7), (14), (15), and the equality

fJCos /8/ = (1/2”-’) ~ COS[~1 + ~ (_l)pj@j] (16)
i-l ‘> .Pn=ml j=2

which shows that products of cosine functions can be expressed
as sums of cosine functions. We use Eq. ( 14) as our approxi-
mate representation of the tail-limited stochastic excitation.

Equations (7) and ( 14) yield
N

Xnjdt) = a. + al x ukRk cos (~,f + @k)
k=l
N

+ a2 ~ ajU&RjR&COS (Ojt + @j) Cos (~kt + @k)

j.k=l

k].,.kn=l f= I

From Eqs. (16) and (17)
N

Xn,hw) = a. + al z C@k Cos (!-u + Q)

k=]

+ ~ U2 ~ OjUkRjRk {COS [(~j + ~k)t + (@l

j,k= 1

+ @k)] + COS [(~j – ~k)f + (@j + @k)]}

+ ~% ~ h (aki&I) ~ Cos [(~kl

kl...k. f=l P2....P”=O.1

+ ~ (–l)pj~kj)f + (@k, + z (–l)pj@kj)] (18)

The approximation of the stochastic process has now the form
of Eq. (2).

Approximation of the Condition for Nonoccurrence of
Chaos. We now show, for the case of the polynomial approxi-
mation, how Eq. (2) (for which we substitute Eq. (18)), and
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Table 1 Estimated probability that approximate Melnikov
process M* has no simple zeros

u <0.25 0.30 0.35 0.40 0.45 0.50

P(M* < O) 1.000 0.982 0.685 0.193 0.030 0.006

I@ (3), (4), and (5) are used to obtain the approximation of
the condition guaranteeing that chaos does not occur. We have

M* = a + u[aoaO + al ~ a~R~ + az ~ ~j,~RjR~ + . .
k=l j.k=l

kl. $.=1 i=l

where

a = –Ik + ymax [z(u, 4)1 (20)

U’. = Z(O, o) (21)

Ctk= max [Z(fh, @k)] (22)

~j,k = (1/2) ffjuk {max[.z(~j + f)k, @j + @~)]

+ max [Z(Qj – Q, @j - @i)]} (23)

i=l P2. !P,, =o.1

+ ~ (–l)’jflk,,Q, + ~ (–l)p@l,]} (24)
,=2 j=2

where max [z( Cl, @) ] denotes the maximum of the function z
over all possible values of @.

Example, We illustrate the procedure based on polynomial
approximations for the Duffing-Holmes oscillator, for which
~( x, ) = x, – x?. The coordinates of the homoclinic orbit for
the unperturbed system are

x,(t) = (2)]’2 sech t

i,(r) = (2)]’2 sech r tanh r

We use the right-hand ( + ) orbit in our calculations. The same
results are obtained for the left-hand orbit. In this case, Z =
–4/3, z(O, O) vanishes, and the function z ( fl, @) = (2) *’2n0
sech (7rf2/2) cos @ (Arrowsmith and Place, 1990), so that max
[z(f? @)] = (2) “2T0 sech (JTfV2). We assume in our exam.
ple ~k = 0.15, c-y = 0.15, and the stochastic process

X(t) = a + (b – a) @[Y(t)]

where a = –1, b = 1 (i.e., the distribution of X is F(X) = (X
– a)/ (b – a), which corresponds for our choice of parameters
aandbto F(X) =Ofor X< -1, F(X) =Ofor X>l, and
a linear variation of F(X) between these limits). The process
Y(t) is assumed to be Gaussian with zero mean, unit variance,
and spectral density = 0.2 (O <0< 5), g(!Q) = O (f) <
0 and O > 5). We illustrate the approach based on polynomial
approximation,

@(y) may be approximated by a polynomial in odd powers
of y. If the approximating polynomial is of degree three, that
is, if

o(y) = a. + aly + a3y3

we must have cr. = 0.5,and least-squares fitting yields a, =
0.329652222, a3 = –0.018084395. It follows that:

x(t) = –0.036168790 Y(t)’ + 0.659304444 Y(t)

The results obtained by using Eq. (7) with N = 50 and 1000
samples are listed in Table 1. To a first approximation, it can
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thus be stated that, with probability one, the system will not
experience chaos provided that u <0.25. Our experience with
similar polynomial approximations suggests that using a higher-
degree polynomial does not affect the estimated probabilities
significantly, especially for large probabilities, which are of
primary concern in practice.

Discussion and Conclusions

In this paper, we used the generalized Melnikov approach to
estimate the reliability with respect to the occurrence of jumps
of a wide class of multistable systems subjected to additive
noise. We dealt with systems whose stochastic excitations have
tail-limited probability distributions. This case is of interest be-
cause physical constraints limit the magnitude of random vari-
ates of interest in offshore engineering (e.g., waves). We con-
sidered two possible representations of the random excitation:
1) a Fourier integral representation of the non-Gaussian process,
and 2) a polynomial approximation. Both result in procedures
that are computationally intensive, but entirely feasible.

The systems considered in this exploratory work have one
degree of freedom and unforced, frictionless counterparts with
homoclinic or heteroclinic orbits. The Melnikov approach is
also applicable to multi-degree-of-freedom systems (Wiggins,
1990; Allen et al., 1991). However, for some systems encoun-
tered in offshore engineering, it may be difficult to identify the
homoclinic or heteroclinic orbits of the system’s unperturbed
counterpart. The simulation of the transformed Gaussian pro-
cess may also pose difficult problems. These difficulties would
limit the applicability of our approach.

The noise was assumed to be additive. However, the exten-
sion to multiplicative noise is straightforward (Frey and Simitr,
1993b). Also, even though Melnikov theory is based on the
assumption that the perturbations are small, it is in practice
applicable to systems with fairly large perturbations (see, e.g.,
Moon, 1987). Our approach is therefore not restricted to small
forcing and friction.

To our knowledge, the MeInikov-based approach presented
here provides the only available means for developing a comput-
able criterion that guarantees the nonoccumence of jumps in the
types of systems we investigated. Work on its extension to
more complex systems and on reducing its current limitations
is currently in progress.
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